Parallel
Programming
Lec 4

Books

Numerical Analysis and Scientific Computing

Parallel Algorithms

Henri Casanova, Arnaud legrand, and Yues Robert
co CRC Press
a cmarman a math sook

Undergradiate lopics in Computer Scieane

Paman Trobec - Bošjan Sinmik Patricio Bulic • Borut Robič

Introduction to Parallel Computing

From Algorithms to Programming on State-of-the-Art Platforms
vilics

Wiley Series on Parallel and Distributed Computing . Albert Zomayo. Series Editor

ALGORITHMS AND PARALLEL COMPUTING

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

Sorting

Sorting is the process of ordering a set of values into ascending (lowest to highest) or descending (highest to lowest) order.

Sorting is used in compilers, editors, memory management and process management and is one of the most important operations performed in computers.
There are several sequential sorting algorithms, such as ShellSort, MergeSort, QuickSort, TreeSort, HeapSort and BingoSort, which are comparision-based sorting algorithms.

Two Approaches to Sorting

Sorting by Merging.
In this method, the sequence to be sorted is divided into two subsequences of equal length.
Each of the two subsequences is now sorted recursively.

Finally, the two sorted subsequences are merged into one sorted sequence, thus providing the answer to the original problem.

Two Approaches to Sorting

Sorting by Splitting.

In this method, the sequence to be sorted is divided into two subsequences of equal length such that each element of the first subsequence is smaller than or equal to each element of the second subsequence.

This splitting operation is then applied to each of the two subsequences recursively.

When the recursion terminates, the sequence is sorted.

Compare-and-Exchange

We assume that the elements to be sorted are integer numbers and are resident in an array, and for simplicity we take the number of elements to be a power of 2 (i.e. $0,2,4,8,16,32, \ldots, 2^{\text {n }}, \ldots$).

As is usual, we suppose that each element of the array to be sorted has a key which governs the sorting process.

If the keys of the items to be sorted are in a vector Key[1 ... n], the operation of compare-and-exchange can be defined as follows:

```
Compare-and-Exchange(i,j)
if (Key[i] > Key[j] ) { // sorting in increasing order i<j
temp = Key[i] ;
Key[i] = Key[j];
Key[j] = temp;
}
```


Parallel Compare-andExchange

This indicates that two compare-and-exchange operations can be performed simultaneously if and only if they operate on disjoint entries of the vector Key.

Version $1-P_{1}$ sends A to P_{2}, which then compares A and B and sends back to P_{1} the $\min (\mathrm{A}, \mathrm{B})$.

Version $2-P_{1}$ sends A to P_{2} and P_{2} sends B to P_{1}, then both perform comparisons and P_{1} keeps the $\min (A, B)$ and P_{2} keeps the $\max (\mathrm{A}, \mathrm{B})$.

Mergesort

Mergesort is a classical sorting algorithm using a divide-and-conquer approach.

The initial unsorted list is first divided in half, each half sub-list is then applied the same division method until individual elements are obtained.

Pairs of adjacent elements/sub-lists are then merged into sorted sub-lists until the one fully merged and sorted list is obtained.

Mergesort

Mergesort

Computations only occur when merging the sub-lists.
In the worst case, it takes $2 \mathrm{~s}-1$ steps to merge two sorted sub-lists of size s. If we have $m=n / s$ sorted sub-lists in a merging step, it takes:

$$
\frac{m}{2}(2 s-1)=m s-\frac{m}{2}=n-\frac{m}{2}
$$

steps to merge all sublists (two by two).
Since in total there are $\log (\mathrm{n})$ merging steps, this corresponds to a time complexity of $\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$.

Parallel Mergesort

The idea is to take advantage of the tree structure of the algorithm to assign work to processes.

merge(Start, Mid, End)
$\mathrm{i}=\mathrm{k}=$ Start, $\mathrm{j}=\mathrm{Mid}+1$
While $(\mathrm{i} \leq$ Mid and $\mathrm{j} \leq$ end $)$
If (T[i] $\leq T[j])$

$$
\mathrm{A}[\mathrm{k}++]=\mathrm{T}[1++]
$$

Else

$$
\mathrm{A}[\mathrm{k}++]=\mathrm{T}[\mathrm{j}++]
$$

while $(\mathrm{i} \leq$ Mid $)$

$$
\mathrm{A}[\mathrm{k}++]=\mathrm{T}[\mathrm{i}++]
$$

while $(\mathrm{j} \leq \mathrm{end})$

$$
\mathrm{A}[\mathrm{k}++]=\mathrm{T}[\mathrm{j}++]
$$

ParallelMergeSort(A, n)

For $\mathrm{i}=0$ to $\mathrm{i}<\log (\mathrm{n})$ do
For $\mathrm{j}=0$ to $\mathrm{j}<\mathrm{n}$ do in parallel

$$
\mathrm{T}[\mathrm{j}]=\mathrm{A}[\mathrm{j}]
$$

For $\mathrm{j}=0$ to $\mathrm{j}<\mathrm{n} /\left(2^{(\mathrm{i}+1)}\right)$ do in parallel $\operatorname{merge}\left(\mathrm{j} * 2^{(\mathrm{i}+1)},(2 \mathrm{j}+1) * 2^{\mathrm{i}-1},(\mathrm{j}+1) * 2^{(\mathrm{i}+1)}-1\right)$

Parallel Mergesort

If we ignore communication time, computations still only occur when
merging the sub-lists.
$\sum(1+2+4+8+16+\cdots+n)=\sum \frac{n}{1}+\frac{n}{2}+\frac{n}{4}+\cdots+\frac{n}{n}$
$=\sum_{0}^{\log n} \frac{n}{2^{i}}$
$\mathrm{a}_{0}=\mathrm{n}, \mathrm{r}=1 / 2$
then the summation $\left.=a_{0} /(1-r)=n /(1-1 / 2)\right)=n /(1 / 2)=2 n$
It takes 2 n steps to obtain the final sorted list in a parallel implementation, which corresponds to a time complexity of $\mathrm{O}(\mathrm{n})$

