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Sorting
Sorting is the process of ordering a set of values into 
ascending (lowest to highest) or descending (highest to 
lowest) order.

Sorting is used in compilers, editors, memory management 
and process management and is one of the most important 
operations performed in computers.

There are several sequential sorting algorithms, such as 
ShellSort, MergeSort, QuickSort, TreeSort, HeapSort and 
BingoSort, which are comparision-based sorting algorithms.
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Two Approaches to Sorting
Sorting by Merging.

In this method, the sequence to be sorted is divided 
into two subsequences of equal length.

Each of the two subsequences is now sorted 
recursively.

Finally, the two sorted subsequences are merged into 
one sorted sequence, thus providing the answer to the 
original problem.
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Two Approaches to Sorting
Sorting by Splitting.

In this method, the sequence to be sorted is divided 
into two subsequences of equal length such that each 
element of the first subsequence is smaller than or 
equal to each element of the second subsequence.

This splitting operation is then applied to each of the 
two subsequences recursively.

When the recursion terminates, the sequence is sorted.
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Compare-and-Exchange
We assume that the elements to be sorted are integer numbers and 
are resident in an array, and for simplicity we take the number of 
elements to be a power of 2(i.e. 0, 2, 4, 8, 16, 32, …, 2n, …).

As is usual, we suppose that each element of the array to be sorted 
has a key which governs the sorting process.

If the keys of the items to be sorted are in a vector Key[1 ... n], the 
operation of compare-and-exchange can be defined as follows:
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Compare-and-Exchange(i,j)
if (Key[i] > Key[j] ) { // sorting in increasing order i<j

temp = Key[i] ;

Key[i] = Key[j];

Key[j] = temp;

}



Parallel Compare-and-
Exchange

This indicates that two compare-and-exchange operations can be 
performed simultaneously if and only if they operate on disjoint 
entries of the vector Key.

Version 1 – P1 sends A to P2, which then compares A and B and 
sends back to P1 the min(A,B).

Version 2 – P1 sends A to P2 and P2 sends B to P1, then both 
perform comparisons and P1 keeps the min(A,B) and P2 keeps the 
max(A,B).
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Mergesort
Mergesort is a classical sorting algorithm using a divide-
and-conquer approach.

The initial unsorted list is first divided in half, each half 
sub-list is then applied the same division method until 
individual elements are obtained.

Pairs of adjacent elements/sub-lists are then merged into 
sorted sub-lists until the one fully merged and sorted list is 
obtained.
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Mergesort
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Mergesort
Computations only occur when merging the sub-lists.

In the worst case, it takes 2s − 1 steps to merge two sorted sub-lists 
of size s. If we have m = n/s sorted sub-lists in a merging step, it 
takes:

steps to merge all sublists (two by two).

Since in total there are log(n) merging steps, this corresponds to a 
time complexity of O(n log(n)).
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Parallel Mergesort
The idea is to take advantage of the tree structure of the algorithm 
to assign work to processes.
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merge(Start, Mid, End)

i = k = Start, j = Mid + 1

While(i ≤ Mid and j ≤ end)
If (T[i] ≤ T[j])

A[k++] = T[i++]

Else

A[k++] = T[j++]

while(i ≤ Mid)
A[k++] = T[i++]

while(j ≤ end)
A[k++] = T[j++]
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ParallelMergeSort(A, n)

For i = 0 to i<log(n) do

For j = 0 to j <n do in parallel

T[j] = A[j]

For j = 0 to j <n/(2(i+1)) do in parallel
merge(j * 2(i+1), (2j+1)*2i-1, (j+1) * 2(i+1)-1)
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Parallel Mergesort
If we ignore communication time, computations still only occur 
when

merging the sub-lists.

 (1 + 2 + 4 + 8 + 16 +⋯+ 𝑛) =  
𝑛
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2
+ 
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4
+⋯+
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=  0
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2𝑖

a0 = n , r = ½

then the summation = a0 /(1-r) = n/(1-1/2)) = n/(1/2) = 2n

It takes 2n steps to obtain the final sorted list in a parallel 
implementation, which corresponds to a time complexity of O(n)
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