Parallel
Programming

Lec 4

___]

Books

Chapman & Hall /CRC
Num

perical Analvais and Scientific Compuring

Parallel
Algorithms

| ~——————

Henr Casanova, Arnaud Legrand
and Yves Robent

(ol CRC Press

Roman Trobec - Bostjan Slivnik
Patricio Bulic - Borut Robi¢

Introduction
to Parallel
Computing

From Algorithms to Programming on
State-of-the-Art Platforms

@ Springer

COMPUTING

ALGORITHMS AND
PARALLEL

|t
[

i

RTEITI LI LA

T

pror
i 4
P . S

i

(ATTIR AR

)

i g :
i‘ 5@ 2 v
A A mi

L

it

FAVEZ GEBALI

il | 1 b
%8 BRBREAS

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

Benha University staff SeM@ioms:Ahmed Hassan Ahmed Abu El Atta (
Beakin Daliait You are in:Home/Courses/Compilers Back To Courses &~ o
enha Universt . [o
Ass. Lect. Ahmed Hassan Ahmed Abu El Atta :: Course Details: T
Home Compilers .
At ils add course | edit course
| adi Comp"ers @
- @
Eavel Undergraduate !
Courses l o
Publications Last year taught 2018
Inlinks(Competition) =
Course description Not Uploaded 8
Theses '?
-
Reports .
Course password &
Published books @
Workshops / Conferences [/ .
| Course files 29d fies ok
Supervised PhD)
Supervised MSc Course URLS add URLs
| £
Supervised Projects =
Course assignments add assianments z
Education ’
Course Exams add exams | q
L Kill add exams
T &Model Answers | (\-1{
| eul
Academic Positions i
Administrative Positions

Sorting

Sorting Is the process of ordering a set of values into
ascending (lowest to highest) or descending (highest to
lowest) order.

Sorting is used in compilers, editors, memory management
and process management and is one of the most important
operations performed in computers.

There are several sequential sorting algorithms, such as
ShellSort, MergeSort, QuickSort, TreeSort, HeapSort and
BingoSort, which are comparision-based sorting algorithms.

Two Approaches to Sorting

Sorting by Merging.

In this method, the sequence to be sorted is divided
Into two subsequences of equal length.

Each of the two subsequences Is now sorted
recursively.

Finally, the two sorted subsequences are merged into
one sorted sequence, thus providing the answer to the
original problem.

Two Approaches to Sorting

Sorting by Splitting.

In this method, the sequence to be sorted is divided
Into two subsequences of equal length such that each
element of the first subsequence is smaller than or
equal to each element of the second subsequence.

This splitting operation is then applied to each of the
two subsequences recursively.

When the recursion terminates, the sequence Is sorted.

Compare-and-Exchange

We assume that the elements to be sorted are integer numbers and
are resident in an array, and for simplicity we take the number of
elements to be a power of 2(i.e. 0, 2, 4, 8, 16, 32, ..., 2", ...).

As is usual, we suppose that each element of the array to be sorted
has a key which governs the sorting process.

If the keys of the items to be sorted are in a vector Key[1 ... n], the
operation of compare-and-exchange can be defined as follows:

Compare-and-Exchange(i,))

if (Key[i] > Keyl[j]) {// sorting in increasing order I<|
temp = Keyl[i] ;

Key[i] = Key[j];

Key[j] = temp;

}

Parallel Compare-and-
Exchange

This indicates that two compare-and-exchange operations can be
performed simultaneously if and only if they operate on disjoint
entries of the vector Key.

Version 1 — P, sends A to P,, which then compares A and B and
sends back to P, the min(A,B).

Version 2 — P, sends A to P, and P, sends B to P, then both
perform comparisons and P, keeps the min(A,B) and P, keeps the
max(A,B).

Mergesort

Mergesort Is a classical sorting algorithm using a divide-
and-conquer approach.

The Initial unsorted list is first divided in half, each half
sub-list is then applied the same division method until
individual elements are obtained.

Pairs of adjacent elements/sub-lists are then merged into
sorted sub-lists until the one fully merged and sorted list IS

obtained.

Mergesort

36 | 2% | 35 | 42 |15 |41 | 75 | 2
a_,_:—'—'_'_'_'-._'_ __\-_‘-_"‘—\-_..
56 | 29 | 35 | 41 15 | 41 |75 | 21
55 | 29 15 | 42 12 | 41 75| 21
36 29 3% 42 15 4] 74 21
a9 | 5% 35 | 42 15 | 41 L | 75
% | 35 | 42 | 36 15 |21 | 41 | 75
"—-___‘____h -._'_'_'_'_,_,_,—'—'_
15 [21 [29 | 35 | 41 | 42 | 55 | 75

Mergesort

Computations only occur when merging the sub-lists.

In the worst case, it takes 2s — 1 steps to merge two sorted sub-lists
of size s. If we have m = n/s sorted sub-lists in a merging step, it
takes:

E(25—1):m5—E — -
2 2
steps to merge all sublists (two by two).

Since In total there are log(n) merging steps, this corresponds to a
time complexity of O(n log(n)).

Parallel Mergesort

The idea Is to take advantage of the tree structure of the algorithm
to assign work to processes.

HEHEENEE
"I SR T 2N T AN T
2478|15\36

P1
Ti=a,

o

Merge
{To}and {T;}

Merge
{T,}and {T,}

Merge
{Ty, T;}and
{T, To}!

Merge
{T,}and {T:}

Merge
{TO ’ T]_l T2 IT3}

Merge
{Te}and {T,}

Merge
{T,, Ts}and
{Te T}

merge(Start, Mid, End)
| =k =Start,] =Mid + 1

While(i < Mid and j < end)
If (T[1] <T[))
Al[k++] = T[i++]
Else
Alk++] = T[j++]
while(i < Mid)
Alk++] = T[1++]

while(j < end)
Alk++] = T[j++]

ParallelMergeSort(A, n)

For 1 =0 to i<log(n) do
For j=0to] <ndo in parallel

TOl=All
For j = 0to j <n/(20*D) do in parallel
merge(j * 20*D), (2j+1)*2'-1, (j+1) * 20+D-1)

Parallel Mergesort

If we Ignore communication time, computations still only occur
when

merging the sub-lists.
N(1+2 +4 +8+16+ - +n)= ToH ottt

. logn n
= %"

aQ=n,r=%
then the summation = a,/(1-r) = n/(1-1/2)) = n/(1/2) = 2n

It takes 2n steps to obtain the final sorted list in a parallel
Implementation, which corresponds to a time complexity of O(n)

